Я отношусь к этой тенденции с откровенным скепсисом, потому что знаю, насколько нечувствительны данные к причинам и следствиям. Например, информацию об эффекте действия или интервенции просто нельзя получить из необработанных данных, если они не собраны путем контролируемой экспериментальной манипуляции. В то же время, если у нас есть причинная модель, мы часто можем предсказать результат интервенции с помощью данных, к которым никто не прикасался.
Аргументы в пользу причинных моделей становятся еще более убедительными, когда мы пытаемся ответить на контрфактивные запросы, предположим: «Что бы произошло, если бы мы действовали по-другому?». Мы подробно обсудим контрфактивные запросы, потому что они представляют наибольшую сложность для любого искусственного интеллекта. Кроме того, развитие когнитивных навыков, сделавшее нас людьми, и сила воображения, сделавшие возможной науку, основаны именно на них. Также мы объясним, почему любой запрос о механизме, с помощью которого причины вызывают следствия, – самый прототипический вопрос «Почему?» – на самом деле контрфактивный вопрос под прикрытием. Таким образом, если мы хотим, чтобы роботы начали отвечать на вопросы «Почему?» или хотя бы поняли, что они значат, их необходимо вооружить моделью причинности и научить отвечать на контрфактивные запросы, как показано на рис. 1.
Еще одно преимущество, которое есть у причинных моделей и отсутствует в интеллектуальном анализе данных и глубинном обучении, – это способность к адаптации. Отметим, что на рис. 1 оцениваемая величина определяется на базе одной только причинной модели – еще до изучения специфики данных. Благодаря этому механизм причинного анализа становится невероятно адаптивным, ведь оцениваемая величина в нем подойдет для любых данных и будет совместима с количественной моделью, какими бы ни были числовые зависимости между переменными.
Чтобы понять, почему эта способность к адаптации играет важную роль, сравните этот механизм с системой, которая пытается учиться, используя только данные. В этом примере речь пойдет о человеке, но в других случаях ей может быть алгоритм глубинного обучения или человек, использующий такой алгоритм. Так, наблюдая результат L у многих пациентов, которым давали лекарство D, исследовательница в состоянии предсказать, что пациент со свойством Z проживет L лет. Но теперь ее перевели в новую больницу в другой части города, где свойства популяции (диета, гигиена, стиль работы) оказались другими. Даже если эти новые свойства влияют только на числовые зависимости между зафиксированными переменными, ей все равно придется переучиваться и осваивать новую функцию предсказания. Это все, на что способна программа глубинного обучения – приспосабливать функцию к данным. Однако, если бы у исследовательницы была модель для действия лекарства и если бы ее причинная структура оставалась нетронутой в новом контексте, то оцениваемая величина, которую она получила во время обучения, не утратила бы актуальности. Ее можно было бы применить к новым данным и создать новую функцию предсказания.
Многие научные вопросы выглядят по-другому «сквозь линзу причинности», и мне очень понравилось возиться с этой линзой. В последние 25 лет ее эффект постоянно усиливается благодаря новым находкам и инструментам. Я надеюсь и верю, что читатели этой книги разделят мой восторг. Поэтому я хотел бы завершить это введение, анонсировав некоторые интересные моменты книги.
В главе 1 три ступени – наблюдение, интервенция и контрфактивные суждения – собраны в Лестницу Причинности, центральную метафору этой книги. Кроме того, здесь вы научитесь основам рассуждений с помощью диаграмм причинности, нашего главного инструмента моделирования, и встанете на путь профессионального овладения этим инструментом. Более того, вы окажетесь далеко впереди многих поколений исследователей, которые пытались интерпретировать данные через линзу, непрозрачную для этой модели, и не знали о важнейших особенностях, которые открывает Лестница Причинности.