Мини-тест Тьюринга

В 1950 году Алан Тьюринг задался вопросом, что это значит: компьютер, думающий как человек. Он предложил практический тест под названием «Игра в имитацию», но исследователи искусственного интеллекта с тех пор зовут его исключительно тестом Тьюринга. Во всех практических отношениях компьютер достоин считаться думающей машиной, если обычный человек, который общается с ним при помощи клавиатуры, не догадается, с кем он разговаривает – с другим человеком или с компьютером. Тьюринг был горячо уверен в том, что это абсолютно достижимо. Он писал: «Я верю, что примерно через 50 лет можно будет так хорошо программировать компьютеры для игры в имитацию, что после пяти минут вопросов и ответов у среднего собеседника будет не более 70 %-ного шанса сделать правильный выбор».

Предсказание Тьюринга оказалось немного неточным. Ежегодно самый похожий на человека чатбот в мире борется за премию Лёбнера: за программу, которая сумеет обмануть всех четырех судей, притворяясь человеком, полагается золотая медаль и 100 тысяч долларов. В 2015 году, спустя 25 лет с начала соревнований, ни одной программе не удалось обмануть не то что всех судей, но даже и половину.

Тьюринг не просто разработал игру в имитацию, он также предложил стратегию, чтобы пройти тест. «Что, если разработать программу, симулирующую не разум взрослого человека, а ум ребенка?» – спросил он. Если это сделать, можно было бы обучить ее так, как мы обучаем детей, – и вуаля! Через 20 лет (или меньше, учитывая более высокую скорость компьютера) мы получим искусственный интеллект. «Можно предположить, что ум ребенка подобен тетради, которую покупают в канцелярском магазине, – писал он. – Совсем небольшой механизм и много пустых страниц». Здесь он ошибался: мозг ребенка богат механизмами и заранее загруженными шаблонами.

И все же я думаю, что в чем-то Тьюринг прав. Скорее всего, у нас не получится произвести интеллект, подобный человеческому, пока мы не создадим интеллект, схожий с детским, и главным компонентом этого интеллекта будет владение причинно-следственными связями.

Как же машины могут получить знания о причинно-следственных связях? Это и по сей день остается важнейшим вызовом, который, несомненно, относится к замысловатым сочетаниям данных, поступающих из активных экспериментов, пассивного наблюдения и (не в последней степени) самого программиста, что во многом похоже на входящую информацию, которую получает ребенок, только эволюцию, родителей и товарищей заменяет программист.

Тем не менее ответим на несколько менее амбициозный вопрос: как машины (и люди) могли бы представить знания о причинно-следственных связях таким образом, чтобы быстро получать доступ к нужной информации, правильно отвечать на вопросы и делать это с такой же легкостью, с какой это получается у трехлетнего ребенка? На самом деле таков главный вопрос, который мы рассмотрим в этой книге.

Я называю это мини-тестом Тьюринга. Идея здесь в том, чтобы взять простую историю, каким-то образом закодировать ее на машине, а потом проверить, сможет ли она правильно ответить на вопросы о причинно-следственных связях, на которые способен ответить человек. Это мини-тест по двум причинам. Во-первых, потому что он сведен к рассуждениям о причинах и следствиях, что исключает остальные аспекты человеческого интеллекта, такие как общая картина мира и естественный язык. Во-вторых, мы позволяем конкурсанту закодировать историю в виде любого удобного представления и освобождаем машину от задачи извлечь историю из собственного опыта. Проходить этот мини-тест стало задачей всей моей жизни – я делаю это сознательно последние 25 лет и делал бессознательно раньше.