Известно, что в процессе пассирования культур диплоидных клеток человека происходит характерное для старения нормальных клеток снижение числа меченых >3Н-тимидином клеток [82, 86]. Так, в наших исследованиях на 13-м и 45-м пассажах через 48 часов культивирования число меченых клеток было 80,8±5,5% и 29,0±2,2%.
Мы изучали также влияние эмоксипина на пролиферацию ДКЧ при постоянном присутствии препарата (10>—5 М эмоксипина, на протяжениии 25 суток)
на протяжении семи пассажей (с 36-го до 42-й пассаж). В этих условиях эмоксипин замедлял снижение числа клеток, синтезирующих ДНК, по мере культивирования, то есть тормозил характерное для пролиферативного старения диплоидных клеток человека снижение пролиферации. Так, в контрольных культурах с 36-го по 42-ой пассаж доля клеток, синтезирующих ДНК, снизилась с 88,7±3,7% до 66,0±8,0%. Тогда как в присутствии 10>—5 М эмоксипина доля клеток, синтезирующих ДНК, на 42-ом пассаже составила только 83,6±1,7%.
Следует подчеркнуть, что в данном эксперименте при постоянном присутствии антиоксиданта в течение 7 пассажей не наблюдали изменений кариотипа и морфологии клеток. Что позволило сделать важный вывод об отсутствии токсического действия эмоксипина в дозах 10>—5М на нормальные клетки человека.
Эти данные хорошо согласуются с фактами стимуляции антиоксидантами митотической активности клеток паренхимы печени и клеток эпителия тонкой кишки мышей in vivo [37, 59, 60]. Добавление в пищу мышам эмоксипина стимулировало кроветворение после кровопотери у мышей старших возрастных групп [69, 70]. Показано, что при введении антиоксидантов в дозах, увеличивающих антиокислительную активность (АОА), происходит ускорение деления клеток и уменьшения среднего времени генерации.
Напротив, антиоксиданты в дозах, уменьшающих антиокислительную активность, тормозят размножение клеток, тормозя их вступление в митоз [3, 4]
Для объяснения этих экспериментальных данных было выдвинуто несколько гипотез [5, 83, 97, 98]. Гипотезу Е. Б. Бурлаковой [5, 6, 79] можно проиллюстрировать схемой, составленной по её работам и представленной на рисунке 5.
Рис. 5. Схема влияния экзогенных, эндогенных антиоксидантов и антиокислительной активности липидов на фазы клеточного цикла
(G>0, G>1, S, G>2). экзо АОА – экзогенные антиоксиданты, эндо АОА – эндогенные антиоксиданты, R• – свободные радикалы.
Действие свободных радикалов (R•) в наиболее чувствительные фазы клеточного цикла может подавить или полностью блокировать деление клеток (a, b, c). Эндогенные антиоксиданты, характеризующиеся высокой антиокислительной активностью, ингибируют свободно-радикальные процессы и снимают этот блок (a’, b’, c’). Той же способностью обладают и экзогенные антиоксиданты (a», b», c»). Кроме того введение экзогенных антиоксидантов способствует увеличению окисляемости эндогенных липидов и уменьшению эндогенной антиокислительной активности (d»). Таким образом, биологическая система поддерживает оптимальный уровень антиокислительной активности. Материальным субстратом, в котором осуществляется этот процесс, являются липидные образования (мембраны и липопротеиды).
Таким образом, на основании полученных результатов и литературных данных можно предположить, что одним из механизмов замедления старения животных антиоксидантами является стимуляция к делению части клеточной популяции, особенно тех, которые находились в состоянии покоя (G>0-фазе). Возможно антиоксиданты-геропротекторы в оптимальной концентрации восстанавливают состояние наружной мембраны, необходимое для реализации действия факторов роста, запускающих деление клетки.