Принцип метода остается тем же, что и в классическом секвенировании по Сенгеру, – синтез четырех наборов нуклеотидных цепочек, кончающихся на А, на Т, на G и на С. Только электрофорез теперь происходит не в плоском геле, а в капилляре, из которого синтезированные молекулы выходят поочередно, от самых коротких к самым длинным. И метка не радиоактивная, а флуоресцентная: каждый терминаторный нуклеотид светится своим цветом, условно говоря, А – зеленым, Т – красным, С – синим, G – желтым. (Реакционных смесей уже не четыре, а одна!) Регистрирующее устройство фиксирует вспышки на выходе из капилляра и отмечает пики свечения каждого цвета. Прибор выдает график с четырьмя кривыми, где пики соответствуют нуклеотидам; последовательность нуклеотидов сохраняется в памяти компьютера.
Первые автоматические секвенаторы начала поставлять фирма Applied Biosystems (1986). Они использовали принцип, разработанный в Калифорнийском технологическом институте, в лаборатории Лероя Худа. Что интересно, в первоначальном варианте секвенирования от Applied Biosystems реакционных смесей было четыре, и флуоресцентную метку несли не дидезоксинуклеотиды, а праймеры. Это было своего рода промежуточное звено между сенгеровским методом и последующим автоматизированным – реакция идет в четырех смесях, но все продукты бегут по одной дорожке электрофореза. Эволюция техники иногда похожа на эволюцию живых существ: полезные изменения накапливаются последовательно.
Applied Biosystems (к тому моменту подразделение компании PerkinElmer) принимала непосредственное участие в создании компании Celera Genomics, основателем которой был знаменитый Крейг Вентер, человек, который многое сделал для того, чтобы чтение ДНК вышло на новый уровень – от сотен и тысяч нуклеотидов к целым геномам. Celera Genomics вскоре прославилась как главный конкурент международного проекта “Геном человека”, а Крейг Вентер, как он сам пишет в своей автобиографии, был одним из первых клиентов Applied Biosystems еще в то время, когда руководил лабораторией в Национальных институтах здравоохранения. Важную роль в его последующих успехах, да и вообще в секвенировании генома человека сыграли автоматические секвенаторы. И наоборот: поставленная грандиозная задача – 3 млрд нуклеотидов, во времена, когда и тысячи считались успехом! – способствовала автоматизации секвенирования.
В 1995 г. Институт геномных исследований Крейга Вентера (TIGR) прочитал первый полный геном бактерии Haemophilus influenzae (1,8 млн нуклеотидных пар). И заодно, “просто чтобы проверить метод”, геном Mycoplasma genitalium (0,58 млн н.п.) – той самой бактерии, на основе которой Крейг Вентер с соавторами в первом десятилетии будущего века начнет создавать синтетический геном. Секвенирование полных бактериальных геномов микробиологи восприняли как сенсацию, историческое событие, Вентеру на конференции, когда он объявил об этом, аплодировали стоя. В 1998 г. был секвенирован геном многоклеточного организма – круглого червя Caenorhabditis elegans (100 млн н.п.).
Проект “Геном человека” стартовал в 1990 г. О получении первой “черновой” последовательности руководитель международного проекта Фрэнсис Коллинз и Крейг Вентер торжественно объявили 26 июня 2000 г. в Белом доме. Окончательное завершение проекта было анонсировано в апреле 2003 г.
Кстати: многие издания писали тогда, что, мол, “расшифрован генетический код человека”. Некоторых биологов это бесило почти так же, как “ваше ДНК”. Дело в том, что по-русски кодом принято называть шифр – правило соответствия между двумя системами символов, в нашем случае – между аминокислотами белка и нуклеотидными триплетами. Генетический код, то есть соответствие аминокислот и триплетов, у человека тот же, что у всех живых организмов, и расшифрован он давно! По-английски же кодом можно назвать и шифр, и шифровку, так что аналогичный английский заголовок не кажется глупым. Впрочем, сейчас уже и в русском языке так прочно прижился “код” как текст компьютерной программы, что это значение задним числом легитимизирует и “генетический код человека”.