1. «оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого неизвестен; оценка зависимости случайной величины от одной или нескольких случайных величин и др.»;
2. «проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого неизвестен».
Некоторые важные концепции математической статистики
«Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности» (Гмурман, стр. 76).
Математическое ожидание примерно равно среднему значению. Причем «математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины» (Гмурман, стр. 78). Поэтому – чем больше данных, тем лучше.
Понятие «центрированная величина» возникает из-за того, что такая величина получается как «разность между случайной величиной и ее математическим ожиданием» (Гмурман, стр. 87). Само же математическое ожидание принимается за центр распределения набора данных.
«Дисперсией (рассениянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания» (Гмурман, стр. 88).
Вот формула:
В этой записи надо учитывать, что прописная X означает весь набор данных, например 3, 8, 19 и т. д. То есть формулу надо читать так, что из каждого из единичных значений X производится вычитание. Например, вычитаем матожидание из 3, из 8, из 19 и т. д.
Подробнее про компоненты дисперсии можно посмотреть в учебнике для инженеров [7.4.4. What are variance components?] (https://www.itl.nist.gov/div898/handbook/prc/section4/)
Совет
«В тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию. Например, если X выражается в линейных метрах, то среднее квадратическое отклонение будет также выражаться в линейных метрах, а дисперсия – в квадратных метрах» (Гмурман, стр. 94).
Теперь разберу концепцию начальных и центральных моментов, очень важную для математической статистики. Для этого возьму произвольный набор данных, в котором для каждого значения известна вероятность.
Вот как считается математическое ожидание:
Еще раз, важно запомнить, что в записи M (X) вот это X означает случайную величину, скажем измерения линейкой. Отдельное значение из этой случайной величины (верхняя строка в таблице выше) обозначается как x. Когда же есть запись с X, то имеются ввиду все значения x.
Итак, теперь возведу в квадрат случайную величину.
Вероятность не изменилась. Это можно понять так. Возведением в квадрат изменяется масштаб, но не вероятность. Каким будет математическое ожидание?
Какой вывод я могу сделать? Второе математическое ожидание гораздо больше первого. Почему? Потому что в первом случае я умножал вероятность 0,01 на 100, а во втором ту же вероятность 0,01 я умножил уже на 10000. Это позволило «лучше учесть влияние на математическое ожидание того возможного значения, которое велико и имеет малую вероятность» (Гмурман, 98). В зависимости от количества подобных величин, того, насколько они «маленькие», может потребоваться возведение не только в квадрат, но и в более высокие степени.
Начальным моментом порядка k называют математическое ожидание случайной величины, возведенной в степень (k, это может быть и степень k=1). Центральным моментом порядка k называют математическое ожидание степени разности между случайной величиной и математическим ожиданием случайной величины.