Возможная роль эпигенетического наследования в эволюционных процессах вызывает большие сомнения и с чисто теоретической точки зрения. Напомним: все известные сегодня эпигенетические механизмы – это регуляторы интенсивности работы того или иного гена. Под действием внешних факторов эти регуляторы принимают то или иное положение, и оно в той или иной мере наследуется. При продолжении и усилении действия тех или иных факторов положение регуляторов теоретически может с каждым поколением все больше сдвигаться в определенную сторону – но только до некоторого предела. Как известно всякому, кто пользовался приемником или электромясорубкой, любой регулятор мощности ограничен двумя крайними положениями – “выкл.” и “макс.”. И все, что он может делать, – это менять мощность в промежутке между этими значениями. То же самое относится и к молекулярным регуляторам.
Для индивидуального развития и повседневного функционирования организма это не так уж мало. Достаточно вспомнить, что ход едва ли не всех формообразовательных процессов в эмбриогенезе определяется не просто наличием или отсутствием того или иного сигнального вещества (морфогена), но скорее его концентрацией, часто – соотношением концентраций разных морфогенов в каждой конкретной точке зародыша. Да и в последующей жизни едва ли не все существенные характеристики индивидуума – от физических возможностей до распределения активности в течение суток, от времени взросления до склада характера – зависят именно от концентрации определенных молекул в определенных структурах, то есть от интенсивности работы соответствующих генов.
Но совершенно непонятно, как то или иное положение регуляторов может влиять на эволюционные процессы. Во-первых, любой признак, сформировавшийся в результате него, по определению лежит в пределах нормы реакции[89] данного генотипа – то есть с эволюционной точки зрения этот признак уже существует, и то или иное положение регуляторов только обеспечивает его проявление в фенотипе (или, наоборот, препятствует таковому). То, что механизмы проявления признака в ряде случаев имеют большое время срабатывания, захватывающее срок жизни нескольких поколений, само по себе очень интересно, но не отменяет того очевидного факта, что эпигенетические изменения не могут создать никакого эволюционно нового признака. Во-вторых, когда выше мы говорили о важной роли именно концентраций сигнальных веществ (а значит, интенсивности работы соответствующих генов), мы не зря каждый раз уточняли – речь идет о концентрациях этих веществ в данный момент в данной точке тела. Но пространственно-временное распределение активности того или иного гена как раз и не может быть предметом эпигенетического наследования: единственная клеточка, с которой начинается развитие всякого сложного организма, может унаследовать от родителей только какое-то одно конкретное положение регуляторов. Потом, у разных клеток-потомков и на разных этапах жизни, оно неизбежно будет меняться – независимо от того, каким оно было исходно. Да, конечно, вполне вероятно, что исходный, допустим, уровень метилирования того или иного гена в оплодотворенной яйцеклетке как-то влияет на уровень его метилирования в тех тканях, где он работает (и именно эти влияния и “ловят” современные работы по эпигенетическому наследованию). Но никакой сложной картины таким образом не передашь и не унаследуешь: цвет бумаги или ткани, на которой выполнен рисунок, может в той или иной мере влиять на его колорит, но не на само содержание. К тому же мы знаем, что и эмбриологические, и физиологические механизмы обычно нацелены на достижение определенного