Кроме того, широкие пределы размера зазора в замке компрессионных колец вызывают газодинамический дисбаланс двигателя, его повышенную вибрацию. Особенно это характерно для двурядных двигателей. Например, в одном ряду двигателя КАМАЗ может находиться цилиндр с поршнем, в котором установлено компрессионное кольцо с допустимым зазором в замке 0,4 мм, в другом ряду – с допустимым зазором в замке 0,6 мм. В результате различных газодинамических потерь в этих цилиндрах производится различная работа, которая сопровождается различными динамическими нагрузками, приводящими к дисбалансу в кинематической системе двигателя и дополнительным вибрациям со всеми вытекающими отсюда отрицательными последствиями. Разработчикам следует не только уменьшить отклонения на выполнение размера зазора, но и минимизировать его с учетом термодинамических изменений формы и размеров поршня и цилиндра.

Не прибегая к каким-либо дополнительным исследованиям, можно предложить исполнительные размеры зазоров замка для двигателей ВАЗ – 0,25>+0,05 мм, для двигателей ЗМЗ – 0,3>+0,05 мм; для двигателей КАМАЗ – 0,4>+0,05 мм. Технологи должны постараться выполнить эти условия. Насколько позволяет проведенный анализ, пока этого в отечественных двигателях не делается.

Последние теоретические и экспериментальные исследования показали, что величину зазора в замке поршневого кольца можно не только минимизировать, но даже и обнулить. Более подробно об этом будет изложено в другом разделе.

§3. Влияние газодинамики на работу поршневых колец

Парадокс, но факт, что многие десятилетия, широко используемые в мировой практике поршневые уплотнения, пожалуй, самая архаичная и безнадежно устаревшая конструкция в современном двигателе. Классическая, жесткая схема уплотнения между поршнем и цилиндром с гарантированными термодинамическими зазорами и постоянно растущими в процессе эксплуатации зазорами в замках поршневых колец допускает, по общепринятому выражению специалистов «утечку» рабочих газов. Может быть, учитывая огромное рабочее давление в цилиндре, динамику процесса и существенные потери свежего заряда воздуха на такте сжатие и, не меньшие потери газо-воздушной смеси на такте рабочий ход, корректнее эти потери классифицировать, не как «утечки», а как прорывы рабочей среды, находящейся в цилиндре над поршнем в направление картера двигателя. Может быть, это позволит разработчикам обратить особое внимание при проектировании элементов цилиндропоршневой группы, обеспечивающих расчетное и стабильное рабочее давление и более полное его срабатывание.

При проектировании нового уплотнения между поршнем и цилиндром необходимо вспомнить о том, что существующие схемы поршневого уплотнения допускают очень большие потери: «В момент вспышки при положении поршня в ВМТ давление в канавке 1-го кольца близко к давлению Р>z в цилиндре, а в канавке 2-го кольца составляет лишь 50% этой величины» [3]. Это свидетельство значительного прорыва рабочих газов, как в первую, так и во вторую поршневые канавки, и так далее. К сожалению это простая констатация факта без каких-либо последствий.

Рабочий такт «сжатие» характеризуется тем, что при повышенных газодинамических потерях снижается эффективность достижения критического давления сжатия, ухудшается приемистость двигателя из-за ухудшения процесса воспламенения и сгорания топливовоздушной смеси. На такте «рабочий ход» потери рабочих газов приводят к более резкому падению рабочего давления над поршнем и уменьшению полезной работы цикла и, соответственно, всей работы двигателя. В этой связи уместно привести следующие данные. «На преодоление трения поршневых колец приходится приблизительно до 40…50%, а иногда до 60% всех механических потерь в двигателе. Причем в карбюраторном двигателе с тремя поршневыми кольцами на первое кольцо приходится 60%, на второе 30% и на третье 10% затрат энергии на трение колец» [5].