В высоких широтах формируется полярная ячейка циркуляции с нисходящей частью у полюсов и восходящей – в субполярных широтах около 60°. Между ней и ячейкой Хэдли иногда изображают ячейку с обратным направлением циркуляции – ячейку Ферреля, но она значительно менее выражена, чем тропическая и полярная ячейки. В умеренных широтах преобладают западные ветра, не столь устойчивые по силе и направлению, как пассаты.
1.6. Океан в движении
Движение вод в океане вызвано тремя причинами: силами тяготения Луны и Солнца; ветрами; различиями в плотности вод, которая зависит от солености и температуры.
Когда ветер дует над поверхностью океана, он приводит в движение и поверхностный слой воды. Вода движется медленнее, чем ветер. Если бы Земля при этом не вращалась, то движение воды по направлению совпадало бы с ветром. Но сила Кориолиса отклоняет воду вправо от направления ветра в Северном полушарии и влево – в Южном.
Это явление обнаружил норвежский полярный исследователь Нансен во время знаменитого дрейфа «Фрама». Он заметил, что движение корабля, вмерзшего в дрейфующий лед, отклоняется вправо на 20–40° от направления ветра. Объяснение этому явлению дал шведский океанолог Вагн Экман (1874–1954). Поверхностный слой воды приводится в движение ветром. Движется он медленнее, чем ветер, а значит, отклоняется силой Кориолиса сильнее. Верхний слой воды приводит в движение слой нижележащий, тот – следующий, благодаря чему отклонение от первоначального направления с глубиной усиливается (рис. 1.13).
До глубины 100–150 м спираль Экмана делает примерно пол-оборота. Здесь направление движения воды противоположно направлению на поверхности, но скорость уже слишком мала – около 4 % от поверхностной. Результирующий перенос воды происходит под углом 90° к первоначальному направлению ветра.
Энергия ветра передается лишь верхним 100–200 м воды. Однако экмановский перенос приводит к тому, что в некоторых зонах океана происходит подъем уровня поверхности, в других, напротив – понижение (рис. 1.14). Разность уровней приводит к перепаду давлений и, как следствие, к движению воды. Градиент давления уравновешивается силой Кориолиса, и движение воды происходит вдоль линий, соединяющих точки с равной высотой, – такое течение называется геострофическим. К геострофическим близки по природе основные течения Мирового океана, такие как Гольфстрим, Куросио, Агульяс, Антарктическое циркумполярное и другие. Геострофические течения достигают глубин до 2 км.
Рис. 1.13. Спираль Экмана
Экмановский перенос в сочетании с влиянием континентов приводит к образованию замкнутых систем циркуляции в океанах (рис. 1.15). В центре океанических круговоротов уровень поверхности повышается примерно на 1 м относительно среднего уровня. Вода движется по часовой стрелке в Северном полушарии и против часовой – в Южном. Западная часть системы круговоротов, называемая западными пограничными течениями, переносит теплую воду от экватора в более высокие широты. К ним относятся упомянутые выше Гольфстрим, Куросио, Агульяс. Западные пограничные течения более быстрые, узкие и глубокие, чем восточные. Асимметрия возникает из-за вращения Земли. Средняя скорость Гольфстрима 6,4 км/ч, ширина около 100 км. Гольфстрим переносит в 100 раз больше воды, чем все реки планеты. В действительности схема океанских течений выглядит существенно сложнее, чем показано на рис. 1.15, так как движение океана – процесс хаотический, в нем возникают меандры и вихри (рис. 1.16). Иногда они могут достигать сотен километров в диаметре и существовать до нескольких лет.