С точки зрения промтинга это ужасная подсказка. Во-первых, нет никаких переменных и условий. Во-вторых, мы совершили типичную ошибку, добавив оценочное суждение «вкусных».
Наша природа такова, что мы почему-то надеемся, что результат будет соответствовать именно нашему вкусу. Но ИИ так не думает, для него «вкусных» = «ничего» или «что угодно». Кому вкусных? По каким критериям? Из каких продуктов? В результате человек чувствует непонимание и грусть: «Я пробовал (-а) ChatGPT, результат не вдохновил. Как-то все слишком обычно или даже слабо, ничего этакого».
Это самая частая фраза людей, просящих рецепты трех вкусных блюд. Когда промты слабы, неконкретны, запутанны, включают в себя взаимоисключающие условия или не устанавливают конкретные рамки подсказки, модель не сможет раскрыться. Вы будете пытаться выжать 100 км/ч на первой передаче, не умея переключаться до пятой.
Нейромодель GPT колоссально умна, она знает и умеет многое, но, чтобы вывести ее на нужный уровень, вы сами должны очертить ее рамки.
Теперь попробуем иначе.
• Дай мне рецепты трех блюд на ужин.
У меня есть продукты: 2 кг картофеля, 1 кг курятины, морковь, свекла, томаты, чеснок, лук, перец.
В рецептах можно использовать часть или все продукты из списка. Нельзя добавлять продукты, которых нет в списке.
Способ приготовления – жарка или тушение.
Длительность приготовления – до 2 часов.
Блюда должны быть оценены как очень вкусные в большинстве источников.
Все, кроме одного ответа ИИ, точно соответствовали заданию. Но в одном ИИ «взбрыкнул» и по собственной воле добавил вот такой рецепт.
Рецепт 3: томатный суп с овощами и курятиной.
Ингредиенты:
• 500 г курятины;
• 2–3 картофелины;
• 1 морковь;
• 1 свекла;
• 2–3 помидора;
• 2 зубчика чеснока;
• 1 луковица;
• 1 литр куриного бульона;
• 2 столовые ложки растительного масла;
• соль и перец по вкусу;
• зелень (петрушка, укроп) для украшения.
Приготовление:
1. Курятину порежьте…
Модель использовала рецепт с растительным маслом и зеленью, которых не было в списке. Проблема? Нет, это все еще промтинг. Добавляем в диалог новую вводную:
• Дай мне блюда без растительного масла и зелени, их нет в списке.
GPT уже помнит контекст, нейросети не нужно заново ставить условия. Мы лишь поправляем ИИ, вводя в нужные нам рамки. В итоге снова получаем три блюда, но уже с учетом прошлых ошибок. И теперь ни в одном нет «запрещенки». Вот один из примеров.
Тушеная картошка с курятиной в томатном соусе
Ингредиенты:
• 1 кг картофеля;
• 500 г курятины;
• 1 луковица;
• 2 моркови;
• 2–3 зубчика чеснока;
• 2–3 помидора;
• соль и перец по вкусу.
Приготовление:
1. Картофель…
Далее мы будем стараться не цитировать ответы GPT (только несколько раз в виде исключений). Все же не совсем правильно разбавлять авторский текст постоянными ответами ИИ.
Если бы мы пошли дальше, то могли бы попросить советы по сокращению времени готовки или, например, вытянули из ИИ какой-нибудь интересный соус из оставшихся продуктов. Повернуть можно куда угодно – этим промтинг и замечателен.
Конечно, картошка в томатном соусе – не высший пилотаж работы с подсказками, и все же пример отлично передает суть. Если мы умеем «управлять» ИИ, то GPT делает массу нужного и полезного. А если мы еще и креативны, опытны, знаем варианты «маневров», это лишь усиливает эффект.
Кому и где пригодятся навыки промтинга? Самое смешное, что практически всем и везде. Приведем буквально несколько примеров случайных ситуаций.
• Вы – менеджер. Вам нужно продумать варианты развития диалога со сложным клиентом. Или написать многоуровневое письмо с простой и четкой логикой.