. Собственно, топливом является ацетил, а коэнзим А только способствует реакциям окисления. Дальше ацетил-КоА соединяется с щавелевоуксусной кислотой, и образуется лимонная кислота[49]. Затем проходит серия из девяти последовательных превращений трикарбоновых кислот. В конце этой серии вновь получается щавелевоуксусная кислота. Образуется цикл. Это и есть цикл Кребса!

При этом выделяется энергия, которая выталкивает образующиеся в цикле протоны в межмембранное пространство. Образующиеся в цикле электроны остаются с внутренней стороны мембраны. Таким образом, создается разность потенциалов, или электродвижущая сила, создающая ток протонов из межмембранного пространство внутрь митохондрии. Именно этот поток протонов движет турбину электромоторчика и микростанок по производству АТФ.

Итак, примерно в 60 трлн клеток человека в среднем по 500 митохондрий в, очень приблизительно, миллионах АТФ-синтаз постоянно производят АТФ, которая участвует практически во всех химических процессах. Напомним, что АТФ отдает запасенную в этой молекуле энергию и распадается на АДФ и фосфор. Отсюда следует, что молекулы фосфора также повсеместно присутствуют в клетках и они активно используются, в частности для передачи сигналов. Как и любая значимая реакция в клетке, реакция присоединения фосфора (или фосфорной группы) нуждается в специальном ферменте. Такие ферменты называются киназы, а процесс присоединения фосфора – фосфорилирование. Поскольку типов молекул, главным образом белков, к которым может присоединяться фосфор, множество, видов киназ также очень много. Геном человека содержит более 1000 генов, кодирующих киназы, а фосфолирированию подвержена примерно треть всех белков клетки человека.

Клетка, как и человек, существо общественное, и ей необходимо получать сигналы от других клеток, в том числе руководящие указания от мозга и клеток эндокринной системы. Сигнальные молекулы, например гормоны, подплывают к клетке по межклеточной жидкости. Как мы уже знаем, на внешней оболочке клетки расположены белковые молекулы – рецепторы. Их огромное количество. Они очень специфичны, то есть каждый тип рецептора может соединиться только со «своими» сигнальными молекулами, которые определяются рецептором по принципу «ключ-замок». Присоединение сигнальной молекулы меняет конфигурацию, то есть пространственную организацию и форму молекулы-рецептора.

Внешний сигнал в конечном счете может приводить к двум основным реакциям:

1) активация (экспрессия) или дезактивация (блокирование, репрессия) генов в содержащейся в ядре клетки ДНК; это приводит к увеличению или уменьшению количества производимых этими генами белков;

2) активация или дезактивация (блокирование) ферментов. Как мы помним, ферменты можно представить себе как станки, производящие различные операции при производстве сложных белков. Внешний сигнал может менять производительность этих станков и, следовательно, всей поточной линии станков, в которую включен данный фермент.

В результате этих двух реакций функционирование клетки может значительно измениться. В частности, может начаться деление или самоуничтожение клетки.

От рецептора к молекулам, активирующим или дезактивирующим гены (транскрипционные факторы[50]), и белкам-ферментам идет внутриклеточный сигнал. Он может передаваться специальными небольшими сигнальными молекулами и запускать сигнальный каскад химических реакций. Например, изменение рецептора вызывает фосфорилирование первой киназы, она инициирует фосфорилирование второй киназы и т. д. Этот каскад передач фосфорной группы по группе киназ, кстати чрезвычайно распространенный, подобен передаче важного письма по эстафете или прохождению документа по бюрократической цепочке.