В результате изучения закономерностей построения, функционирования и развития организмов могут быть выявлены:
• части тела, органы, ткани и участки мозга, которые могут выполнять функции, аналогичные вновь создаваемому объекту (биоаналоги);
Например, мы хотим создать протез руки или искусственный орган, значит нам нужно изучить изначальную биологическую руку и орган, а не что-то иное.
• виды животных, у которых условия обитания и характеристики биоаналогов наиболее полно удовлетворяют требованиям поставленной задачи; Хотим создать что-то летающее – изучаем птиц и летающих насекомых. Хотим, чтобы что-то эффективно плавало – изучаем рыб.
• основные компоненты и взаимосвязи между ними, которые необходимы для построения функциональной бионической модели – аналога структуры создаваемого объекта;
Хотим создать свою нейросеть – изучаем образцы нервных тканей и как они распространяют сигналы.
• математические модели компонентов и функциональной модели в целом, необходимые для получения и исследования статических и динамических характеристик, влияния изменения структуры, условий применения, возникновения отказов. Хотим, чтобы здания выдерживали какие-то особые условия – смотрим аналогичные среды обитания у растений и копируем структуру.
Эти данные являются основой для системотехнической разработки объекта, выявления возможных альтернатив (вариантов) его построения и выбора субоптимальных вариантов, которые можно рекомендовать для дальнейшей инженерной проработки и реализации.
Методика представлена лишь приблизительно, но вполне подходит для практического использования.
Глава 3. Проблемы развития бионики
В течение последних десятилетий интерес к бионике существенно повысился, однако исследований, обобщающих научные направления и формирующих основы бионики как науки, опубликовано явно недостаточно. Нет единства мнений специалистов по ряду принципиальных положений по методике решения задач бионики, что в определенной степени тормозит ее развитие. Можно утверждать, что становление бионики как науки началось с применения системных методов исследования, математического аппарата анализа и синтеза свойств сложных биологических систем, методов идентификации и распознавания образов для выявления новых свойств организмов, методов кибернетики для раскрытия особенностей управления, адаптации и интеллекта животных, системотехнических методов синтеза и генерации оптимальных решений.
Благодаря этому бионика стала располагать необходимым арсеналом средств и методов исследования живых организмов, а также теоретическим аппаратом, позволяющим на научной основе выявлять секреты живой природы и использовать их не только для совершенствования техники, но и для внесения существенного вклада в естественные науки – биологию, медицину и др.
Таким образом, бионика развивается как наука о методах и средствах использования особенностей строения, функционирования и развития живых организмов для прикладных и научных разработок, направленных на развитие научно-технического прогресса.
Применяемые в бионике методы и технологии основаны на совместном использовании исследований, проводимых в медицинских и биологических науках, в кибернетике (особенно математический анализ динамики биологических систем и их электронное моделирование), и совокупности общенаучных прикладных, в основном технических, дисциплин. Однако имеются проблемы, сдерживающие развитие бионики. Во многом мешает существующая узкая специализация как технических, так и медико-биологических наук.
Развитие науки и техники, а также необходимость глубокого понимания изучаемых проблем потребовали дифференциации знаний и узкой специализации современных ученых. Каждое направление науки при проведении автономных исследований разрабатывает свою терминологию, часто непонятную специалистам других областей, и специфические методики изучения, которые не применимы в других областях. Например, в биологии и медицине выработался свой подход к изучению живых организмов, который существенно отличается от подходов, принятых при изучении технических систем.