Наука столкнулась с поистине странными явлениями в 1935 году, когда Эйнштейн, Подольский и Розен занялись исследованием любопытной квантовой проблемы, называемой «запутанность частиц». Результаты исследования были опубликованы в знаменитой статье, которая не теряет актуальности до сих пор, а рассмотренное в ней явление часто именуется ЭПР-корреляцией.[11] Авторы статьи отвергли принятую в квантовой теории точку зрения о том, что любая элементарная частица каким-то образом «узнает», как ведет себя в пространстве другая, совершенно отдельная элементарная частица. Все наблюдения такого типа они приписали некоему пока еще не установленному локальному искажению, а не особому явлению, которое Эйнштейн саркастически называл «жутким дальнодействием».
Это замечательное образное выражение стоит в одном ряду с еще некоторыми широко растиражированными изречениями великого физика, одно из которых – «Бог не играет в кости». Эйнштейн вновь с удовольствием подколол сторонников квантовой теории, которая все более уверенно утверждала, что некоторые феномены существуют лишь как вероятности, а не как реальные объекты, имеющие конкретное местоположение. Словосочетание «жуткое дальнодействие» уже много десятилетий можно услышать на физических факультетах.[12] Ирония, заключенная в этой фразе, надолго отвлекла всеобщее внимание от истинных масштабов парадоксальности квантовой теории. Учитывая, что аппаратура для проведения квантовых экспериментов долго оставалась сравнительно грубой, кто решился бы усомниться в правоте Эйнштейна?
Однако Эйнштейн был не прав. В 1964 году ирландский физик Джон Белл предложил эксперимент, который позволил бы проверить, могут ли разрозненные элементарные частицы мгновенно влиять друг на друга на огромном расстоянии. Во-первых, для такого эксперимента необходимо создать два фрагмента материи или света, которые имеют общую волновую функцию (как мы помним, даже твердые частицы обладают энергетически-волновой природой). При работе со светом это не составляет труда – достаточно пропустить свет через специальный кристалл. В результате возникают два фотона света, каждый из которых обладает половиной энергии (и двойной длиной волны) по сравнению с фотоном, вошедшим в кристалл. Таким образом, закон сохранения энергии в данном случае не нарушается. Количество энергии остается одинаковым как на входе, так и на выходе.
Согласно квантовой теории все объекты могут вести себя и как частица, и как волна (это свойство называется «корпускулярно-волновой дуализм»), а поведение объекта на квантовом уровне существует только как вероятность. Это означает, что ни одна из субатомных частиц не занимает определенного места в пространстве и не движется в определенном направлении, пока не произойдет коллапс ее волновой функции. Что нужно, чтобы совершить такой коллапс? Как-либо вмешаться в поведение частицы. Например, достаточно «толкнуть» частицу пучком света, попытавшись ее сфотографировать.
Не оставалось никаких сомнений, что коллапс волновой функции произойдет и при любой попытке наблюдения за частицей каким-либо способом. Так, чтобы определить местоположение электрона, по нему необходимо «выстрелить» фотоном. Но в результате взаимодействия двух этих частиц неизбежно произойдет коллапс волновой функции. В некотором смысле эксперимент оказывается искажен. Однако по мере того, как разрабатывались все более сложные эксперименты (подробнее о них – в следующей главе), становилось понятно, что коллапс волновой функции может произойти уже из-за того, что экспериментатор знает о факте эксперимента