– Квантовые флуктуации в потоках фотонов создают истинный квантовый шум, который невозможно предсказать классически.

– Фотоумножители, лавинные фотодиоды и другие высокочувствительные фотодетекторы могут регистрировать эти квантовые флуктуации.


2. Ядерные спины:

– Использование случайных изменений ориентации спинов ядер атомов в ядерно-магнитном резонансе (ЯМР) в качестве источника случайности.

– Квантовые состояния спинов ядер характеризуются дискретными, непредсказуемыми значениями, которые могут быть измерены.

– Детектирование флуктуаций спиновых состояний посредством ЯМР-спектроскопии позволяет получать истинные случайные битовые последовательности.


3. Квантовые генераторы шума:

– Использование квантовых флуктуаций тока и напряжения в электронных схемах в качестве источника случайности.

– Примеры: шумы в резисторах, туннельные шумы в полупроводниковых приборах, флуктуации в сверхпроводящих контурах.

– Эти квантовые шумы являются фундаментальными и непредсказуемыми, в отличие от классических шумов.


4. Радиоактивный распад:

– Детектирование случайных событий распада радиоактивных ядер может служить источником квантовой случайности.

– Время наступления каждого события распада является истинно непредсказуемым на квантовом уровне.

– Счетчики Гейгера и другие детекторы ионизирующего излучения могут регистрировать эти квантовые события.


5. Квантовые явления в твердых телах:

– Использование квантовых эффектов в полупроводниковых, сверхпроводящих и других наноструктурных устройствах.

– Примеры: квантовое туннелирование, флуктуации состояний электронов, переходы между энергетическими уровнями.

– Детектирование этих квантовых процессов может служить источником случайности.

Изменяемый параметр, связанный с алгоритмом обработки чисел (SA)

Роль адаптивных алгоритмов в повышении стойкости генератора;


1. Необходимость адаптивности:

– Квантовые источники случайности могут подвергаться различным внешним воздействиям, которые могут влиять на их производительность и качество.

– Факторы, такие как температура, влажность, электромагнитные поля, старение компонентов и другие, могут вызывать изменения в характеристиках квантовых датчиков.

– Для поддержания высокого качества генерируемых случайных последовательностей необходимы адаптивные методы обработки и контроля квантовых источников.


2. Адаптивные алгоритмы:

– Динамическая подстройка параметров квантовых датчиков и детекторов для оптимизации их работы.

– Применение алгоритмов машинного обучения для отслеживания и компенсации внешних воздействий на квантовые источники.

– Использование методов обратной связи и самокалибровки для поддержания стабильных рабочих характеристик квантовых устройств.

– Адаптивные алгоритмы постобработки для коррекции статистических отклонений в выходных последовательностях.


3. Повышение стойкости:

– Адаптивные алгоритмы помогают поддерживать качество и достоверность случайных последовательностей, генерируемых на основе квантовых источников.

– Они обеспечивают устойчивость к внешним воздействиям и старению компонентов, что повышает надежность и долговечность квантовых генераторов случайных чисел.

– Применение адаптивных методов также улучшает защиту от возможных атак, повышая стойкость генератора к различным формам вмешательства.


4. Примеры адаптивных алгоритмов:

– Методы автоматической подстройки параметров источников, например, регулировка напряжений смещения, температурных режимов, частот дискретизации и т. д.

– Алгоритмы машинного обучения для моделирования и компенсации влияния внешних факторов на квантовые датчики.