На чем основан такой прогноз? Слияния черных дыр происходят практически в пустом пространстве и потому не порождают ничего, кроме гравитационных волн. Сталкивающиеся нейтронные звезды, напротив, оставляют за собой сверхгорячую экзотическую материю, которая дает о себе знать электромагнитными волнами и потоками релятивистских частиц. Их можно наблюдать как минимум несколько месяцев, а то и лет, что дает возможность интегрировать работу гравитационных детекторов с великим множеством наземных и космических обсерваторий, отслеживающих сигналы из космического пространства. Первым примером практической реализации этой возможности стал инициированный событиями 17 августа 2017 г. феерический всплеск активности астрономов и астрофизиков во всем мире. Количество обсерваторий, принявших участие в «гонке за лидерами» LIGO и Virgo, превысило 70 – это впечатляет.
А теперь самое главное: развитие MMA, или в российской терминологии многоканальной астрономии.
О чем же речь? Астрономия, как известно, может использовать и такие мессенджеры, как небесные тела – скажем метеориты или кометы, наблюдения за которыми немало рассказывают о дальней периферии Солнечной системы. Богатая информация о Солнце приходит с солнечным ветром – потоками протонов и электронов, долетающих до Земли со скоростями в несколько сотен километров в секунду. Однако для получения сведений о дальнем космосе, особенно о событиях за пределами нашей Галактики, потребны мессенджеры иного рода, путешествующие со световой или почти световой скоростью, причем лучше всего по неискривленным путям. Это импульсы электромагнитных и гравитационных волн (на квантовом языке – потоки фотонов и гравитонов), а также элементарные частицы, которые не несут электрического заряда и потому не отклоняются космическими магнитными полями. Пока в этом качестве работают одни лишь нейтрино, которые имеют ничтожно малую массу и потому движутся практически со скоростью света (впрочем, не исключено, что когда-нибудь откроют и другие подобные мессенджеры). Входящие в состав галактических космических лучей заряженные частицы (протоны и антипротоны, ядра гелия и более тяжелых элементов, а также электроны и позитроны) тоже могут разогнаться до релятивистских скоростей, однако места их рождения отследить намного труднее.
Астрономия, как известно, одна из древнейших наук. Если считать, что ее родоначальником был основатель первой обсерватории античного мира и создатель первой математической модели Солнечной системы Евдокс Книдский, то ей уже 24 столетия. И почти все это время астрономы вели наблюдения лишь в оптическом сегменте электромагнитных волн, то есть в видимом свете. В терминах энергии фотонов ширина этого диапазона меньше полутора электронвольт – от 1,7 эВ в красной части спектра до 3,1 эВ на фиолетовой границе.
В наши дни возможности астрономических наблюдений стали неизмеримо обширней. Сейчас исследователям космического пространства доступны сигналы, которые переносят фотоны с энергиями от 10>–6 эВ (радиоволны) до 300 млрд эВ (верхний предел чувствительности обзорного гамма-телескопа на борту космической обсерватории имени Ферми). Энергии космических нейтрино регистрируются вплоть до 10>15 эВ, а протонов – даже до 10>20 эВ. Так что ширина диапазона энергий переносчиков сигналов составляет 26 порядков!
И вот что примечательно. Астрономия освоила все гигантское разнообразие космических мессенджеров за очень короткое время. Наблюдения небосвода в инфракрасных лучах ведут с середины XIX в. (сначала на Земле, а с 1983 г. – в космосе, и не только околоземном, но и околосолнечном). Затем настала очередь радиоастрономии. Первый настоящий радиотелескоп с поворотной параболической антенной в 1937 г. построил американец Гроут Ребер и с его помощью создал первую карту радионебосвода. Ультрафиолетовая астрономия возникла гораздо позже, где-то около 1970 г. Рентгеновская астрономия ведет начало с 1949 г. (или даже с 1978 г., если связать день ее рождения с запуском первого спутника с рентгеновским телескопом). Первый гамма-телескоп отправили в околоземное пространство в 1961 г. (на борту американского спутника Explorer 11). Космические лучи открыл сотрудник венского Радиевого института Виктор Гесс больше 100 лет назад, в 1912 г.