Skaitļu reizināšana līdz 10
Sāksim ar to, ka iemācīsimies reizināt visu veidu skaitļus no 1 līdz 10 līdz 10 x 10. Metode ir šāda.
Kā piemēru ņemsim produktu 7 x 8.
Uzrakstiet uz papīra lapas 7 x 8 = un uzzīmējiet apli zem katra no diviem skaitļiem, kas tiek reizināti.
Apskatīsim pirmo no faktoriem, skaitli 7. Cik daudz tā trūkst no skaitļa 10? Atbilde: 3. Aplī zem skaitļa 7 ierakstīsim 3. Tagad pievērsīsimies skaitļam 8. Kas jāraksta aplī zem skaitļa 8? Cik pietrūkst no 10? Ir skaidrs, ka tas ir 2. Mēs ievadām 2 aplī zem faktora 8.
Lūk, ko mēs saņēmām:
Tagad veiksim atņemšanu šķērsām. Tas nozīmē, ka jums ir jāatņem jebkurš no aplī esošajiem skaitļiem (3 vai 2) no skaitļa, kas atrodas nevis tieši virs tā, bet no tā, kas atrodas pa diagonāli, tas ir, virs otra skaitļa aplī. Citiem vārdiem sakot, jūs atņemat 3 no 8 vai 2 no 7. Tas ir jādara tikai vienu reizi, tāpēc izvēlieties opciju, kas jums šķiet vieglāka. Jebkurā gadījumā rezultāts ir vienāds: 5. Šis ir jūsu atbildes pirmais cipars.
8–3 = 5 vai 7–2 = 5
Tagad reizināsim skaitļus apļos. 3 reizes 2 dod 6. Šis būs jūsu atbildes pēdējais cipars. Tādējādi atbilde būs 56. Atrisinātā problēma izskatās šādi:
Ja jūs varat viegli reizināt 2 ar citiem skaitļiem līdz 10, tad varat viegli atcerēties reizināšanas tabulas no 1 līdz 10 un vairāk. Apstiprināsim apgūto ar citu piemēru: 8 x 9.
Cik katrā gadījumā trūkst līdz 10? Atbilde: 2 un 1. Mēs ievadām 2 un 1 apļos zem skaitļiem, kas tiek reizināti. Ko tagad darīsim? Mēs atņemam šķērsām.
8 – 1 = 7 vai 9 – 2 = 7
7 ir atbildes pirmais cipars. Pierakstīsim to. Tagad sareizināsim abus skaitļus apļos:
2 x 1 = 2
2 ir mūsu atbildes pēdējais cipars. Tātad atbilde ir 72.
Viegli, vai ne? Tagad mēģiniet pats atrisināt dažus piemērus. Tā vietā, lai rakstītu atbildes šeit, grāmatā, varat to izdarīt uz atsevišķas papīra lapas vai piezīmju grāmatiņā – vēlāk varat atgriezties pie piemēriem grāmatā un iepriekš nezināt atbildes.
a) 9 x 9 = __; b) 8 x 8 = __; c) 7 x 7 = __; d) 7 x 9 = __; e) 8 x 9 = __; e) 9 x 6 = __; g) 5 x 9 = __; h) 8 x 7 = __
Atrisiniet katru no piemēriem, pat ja jūs jau atceraties reizināšanas tabulas. Šī ir pamatmetode, ko izmantosit turpmāk, reizinot skaitļus.
Kā notika lēmuma pieņemšana? Šeit ir atbildes uz piemēriem:
a) 81; b) 64; c) 49; d) 63; e) 72; e) 54; g) 45; h) 56
Vai tas nav vienkāršākais veids, kā apgūt reizināšanas tabulas?
Vai ir vērts mācīties reizināšanas tabulu?
Tagad, kad esat apguvis skaitļu reizināšanas metodi, vai tas nozīmē, ka jums nav jāapgūst reizināšanas tabulas?
Patiesību sakot, jā un nē.
Tas nav nepieciešams, jo tagad jūs varat pēc nelielas apmācības gandrīz acumirklī aprēķināt jebkura skaitļu pāra reizinājumu. Ja esat jau apguvis reizināšanas tabulu, tad šīs metodes apgūšana dos papildu priekšrocības.
Ja jūs vēl nezināt reizināšanas tabulas, tad jums ir iespēja to apgūt rekordīsā laikā. Kad esat aprēķinājis reizinājumu 7 x 8 = 56 desmit vai vairāk reižu, jūs atklāsiet, ka atbildi esat iegaumējis uz visiem laikiem. Citiem vārdiem sakot, jūs esat iemācījušies daļu no reizināšanas tabulas. Es atkārtoju, ka tas ir vienkāršākais veids, kā es zinu, kā apgūt reizināšanas tabulu, un arī pats izklaidējošākais. Un jums nav jāuztraucas par tabulu neiegaumēšanu no galvas – jūs vienmēr varat aprēķināt nepieciešamo produktu tik ātri, it kā jūs zinātu atbildi no galvas.
Skaitļu, kas ir lielāki par 10, reizināšana
Vai šī metode darbojas, reizinot skaitļus, kas lielāki par 10?
Protams, ka strādā. Izmēģināsim to ar piemēru:
96 x 97 =
Uz kādu lielāku skaitli šie skaitļi jāsamazina? Cik pietrūkst kam? Līdz 100. Ievadiet 4 aplī zem 96 un 3 zem 97.