Внимательно изучив вычислительные мощности, необходимые для создания моделей ИИ, мы видим, что стремление к экспоненциальному увеличению скорости и точности обходится планете дорогой ценой. Требования к обработке данных при обучении моделей ИИ и, следовательно, их энергопотребление все еще являются новой областью исследований. Одна из первых работ в этой области была опубликована исследователем ИИ Эммой Струбелл и ее командой из Массачусетского университета в Амхерсте в 2019 году. Сфокусировавшись на попытке понять углеродный след моделей обработки естественного языка (NLP), они начали набрасывать потенциальные оценки путем запуска моделей ИИ в течение сотен тысяч вычислительных часов[93]. Первые цифры оказались поразительными. Команда Струбелл обнаружила, что запуск всего одной модели NLP приводит к выбросу более 660000 фунтов углекислого газа, что эквивалентно пяти автомобилям, работающим на газе, за весь срок их службы (включая производство), или 125 перелетам в обе стороны из Нью-Йорка в Пекин[94].
Хуже того, исследователи отметили, что такое моделирование является, как минимум, базовой оптимистичной оценкой. Она не отражает реальных коммерческих масштабов, в которых работают такие компании, как Apple и Amazon, собирающие данные в Интернете и использующие свои собственные модели NLP для того, чтобы системы ИИ, такие как Siri и Alexa, звучали более человечно. Однако точный объем энергопотребления, производимого моделями ИИ в технологическом секторе, неизвестен; эта информация хранится как строго охраняемая корпоративная тайна. И здесь экономика данных основана на сохранении экологического невежества.
В области ИИ стандартной практикой является максимизация вычислительных циклов для повышения производительности, в соответствии с убеждением, что больше – значит лучше. Как говорит Рич Саттон из DeepMind: «Методы, использующие вычисления, в конечном итоге являются наиболее эффективными, причем с большим отрывом»[95]. Вычислительная техника перебора при обучении ИИ или систематический сбор большего количества данных и использование большего количества вычислительных циклов до достижения лучшего результата, привела к резкому увеличению потребления энергии. По оценкам OpenAI, с 2012 года объем вычислений, используемых для обучения одной модели ИИ, ежегодно увеличивался в десять раз. Это связано с тем, что разработчики «постоянно находят способы использовать больше чипов параллельно и готовы платить за это экономические издержки»[96]. Мышление с точки зрения экономических издержек сужает взгляд на более широкую локальную и экологическую цену сжигания вычислительных циклов как способа создания дополнительной эффективности. Тенденция к «вычислительному максимализму» имеет глубокие экологические последствия.