Это еще одна фантазия, основанная на школьной физике. Действительно, при ламинарном обтекании воздушным потоком обшивка может разогреться до нескольких тысяч градусов. Поэтому боеголовки МБР при входе в атмосферу тормозят, чтобы не сгореть и не разрушиться, как метеориты. В зависимости от конструкции, они разворачиваются основанием конуса в направлении полета или же имеют тупой носовой обтекатель.
Так создается зона сжатия перед боеголовкой, которая тормозит ее до относительно безопасных ~3 км/сек при входе в тропосферу (там она сгореть уже не успевает)». И далее автор ссылается на американские данные, которые никак не заслуживают доверия, но даже они приводят к выводу о невозможности пилотируемого полета в капсуле без абляционной защиты на боковой нижней поверхности. Вот это опровержение формулы Герберта Оберта аэродинамического нагрева: «В докладе от компании МакДонелл-Дуглас даны пояснения по поводу использования бериллия в (разработанных ею) космических аппаратах. На стр. 610 сказано, что температура на поверхности капсулы «Меркурий» не превышала 1300 градусов по Фаренгейту, т.е., около 700 град. C. Хватило бы, чтобы расплавить алюминий, но для бериллия с температурой плавления 1500 град. C и титана с его 1700 это компресс от простуды. Теперь понятно, почему абляционная защита не понадобилась, а капсулы «Джемини» не выглядят сильно обгоревшими?».
Задача абляционной защиты не только защита и сохранение самой капсулы, но и жизни и здоровья в ней живого человека и оборудования. Помещать человека и оборудование в металлическую капсулу, температура стен, которых 700 градусов Цельсия, это самоубийство для пилота. Это гарантированное уничтожение оборудования и электроники. Резиновые прокладки, обеспечивающие герметичность люка и кабины, тоже будут уничтожены. Температура горения резины 200°С. Отсюда как следствие, разгерметизация космической капсулы и гибель. Аргумент про то, что капсула, покрытая краской и с белыми надписями обычной белой краской, не будет обгорать при такой температуре 700°С не имеет никакого основания. Обычная белая масляная краска начинает весело гореть при температурах 300—500°С и выгорает за короткий промежуток времени. Кроме того, при входе в атмосферу космического аппарата, вокруг образуется копоть, которая осаждается на капсулах любой формы. И следы копоти остаются на покрашенной поверхности аппарата после спуска, чего у американских капсул не наблюдается.
Автор пытается возразить по поводу обгорания краски, что она является огнеупорной: «Очевидно, что в вышедшем из цеха корабле металлическая поверхность была полированной или покрытой краской. Воздействие аэродинамического нагрева, пусть и не слишком сильного, все-таки ее изменило. Но бдительный луноборец спросит: „а как же надпись и флаг США на другом фото?“ На это можно ответить вопросом: вы о жаростойких красках слышали? Погуглите – сразу найдете предложение эмали, которая выдерживает 1000 градусов Цельсия».
К большому разочарованию «Доктора», эти краски не были огнеупорными, они наносились краскопультом или вручную малярами и художницей НАСА. Этот процесс нанесение обычной краски подтверждается материалами сайта НАСА, фотографиями, воспоминаниями участников программы «Джемини» и документальными свидетельствами. Нанесение белых надписей шло с нарушениями технологии окраски металлических поверхностей, без обезжиривания металла, при помощи трафарета, распылителя краски и кисточки. Поэтому краска частично осыпалась еще до начала «полета». Кроме этого, копоть прилипает намертво на любую краску, в таких спусках она неизбежно появляется на поверхности в виде темных полос.