Но главное – понимать, что все эти программы не заменители «головы» аналитика.

Это всего лишь инструментарий. Но, невзирая вроде на эту понятную истину, постоянно разворачиваются баталии на тему «какая программа лучше». Всегда хочется спросить о критерии «лучшести» – ведь каждая программа имеет свои плюсы и минусы, возможности и ограничения.

Решение об использовании той или иной программной среды – это на самом деле исключительно вопрос профессиональных и личных предпочтений.

Я, например, в своей практике использую несколько инструментов: подавляющая часть того, что я делаю, сделана в SPSS, ОСА и Excel.

SPSS и ОСА – поскольку привык ими пользоваться. Excel – потому, что удобен бизнеса и его может открыть, просмотреть и отследить логику формул любой бизнес-пользователь.

Для некоторых задач использую R. Но с языков программирования я бы не рекомендовал начинать не-техническим профессионалам. Это дольше, сложнее, да и вряд ли Вы в своей работе столкнетесь с настолько емкими задачами, чтобы не решить их более простым способом.

Потому, что использовать – больше будет зависеть от того, что Вы решите и осилите освоить. Однозначно в бизнесе (за исключением, если Вы профессиональный аналитик и это Ваша ежедневная работа) самым ходовым инструментом является Excel. Бизнес – это клеточки Excel.

Потому и в данной книге вначале будет показана реализация описательных статистик в Excel, чтобы Вы могли применять эти навыки в знакомом офисном приложении. Но по мере усложнения методов и уровня аналитики мы перейдем на PSPP (аналог-заменитель SPSS).

При обучении прикладному инструментарию для нас с Вами критерием «лучшести» является простота и привычность. Чтобы читатели тратили время не на изучение программы, а фокусировались на сути решаемых задач.

И мой выбор для начинающих и не-инженерных профессий – однозначно Excel и PSPP. Но не просто читайте разделы и главы, а после прочтения сходу отрабатывайте методы в этих программах на Ваших массивах.

Упоминая Excel, не хочу сформировать неправильные ожидания к книге, потому сделаю ударение: в книге не будет обучения базовым навыкам работы с Excel. Изложение книги предполагает, что читатель уже на минимальном базовом уровне знаком с Excel.

Очень краткие итоги раздела

Что я хотел, чтобы читатель вынес из раздела:

1. Никогда не ставьте ИЛИ между аналитикой и интуицией. Всегда И. Не умаляйте роль творчества и случайностей.

2. Пять особенностей социально-экономической реальности:

· Изменчивость

· Редкость нормального распределения

· Репрезентативность выборки

· Пристальное внимание к выбивающимся из общего массива случаям / объектам / наблюдениям

· Важность модели

3. Модель должна предшествовать анализу, чтобы иметь возможность объяснить и проинтерпретировать данные.

4. Разницу между данными, метриками, КПД, дашбордами и собственно аналитикой как поиском скрытых закономерностей и построения прогнозов посредством специального набора инструментов.

5. Неважно какой программный продукт / инструмент Вы используете – используйте то, что знаете. Программы / инструменты дополняют и повышают эффективность, но не заменяют человека.

ВВЕДЕНИЕ В СТАТИСТИЧЕСКИЙ АНАЛИЗ

О статистическом анализе

Нас повсюду окружают данные. В соцсетях, в магазинах, рекламе, метро… даже в авиалайнере. Весь мир – это цифры.

Нам может казаться, что собирая данные (при чем все больше и больше), мы контролируем большое количество важных вещей и держим ситуацию под контролем.

Но на самом деле важно уметь отбирать именно те данные, которые помогают понять ситуацию и принять решения, даже располагая неполной информацией. Какие именно данные важны помогает понять модель, о которой мы уже говорили.