Закон исключенного третьего применим, следовательно, к высказываниям противоречащим и неприменим к высказывания противоположным. Правда, здесь есть одно существенное исключение. Оно касается индивидуальных, строго единичных предметов или явлений, применительно к которым бессмысленно говорить «все» или «некоторые». Противоположные и противоречащие высказывания в этом случае не различаются. Так, высказывание «Бородинское сражение состоялось 26 августа 1812 года» можно отрицать лишь одним способом: «Бородинское сражение не состоялось 26 августа 1812 года»; конечно, чисто формально можно образовать и такую конструкцию: «Все Бородинские сражения. .» или: «Некоторые Бородинские сражения не состоялись 26 августа 1812 года». Однако никакой новой информации такое надуманное искусственное изложение той же самой мысли не даст. Все возможные альтернативы исчерпываются исходным суждением и указанным нами единственным его отрицанием. Поэтому закон исключенного третьего распространяется также и на такую пару суждений, хотя, строго говоря, они являются противоположными, а не противоречащими (противоречащие суждения для таких понятий нельзя образовать).
Более кратко закон исключенного третьего можно сформулировать так: из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано.
В процессе рассуждения надо доводить дело до альтернативного разделения: имеет данный предмет какой-либо признак или не имеет его. Когда это удается достигнуть, остается проверить какую-то одну из указанных возможностей – соответствует она истине или нет, тогда в отношении второй все решится автоматически. Например, предложение может быть высказано в форме единственного числа или в форме множественного числа; и если выяснится, что оно не имело формы множественного числа, то тогда значит оно высказано в форме единственного числа. То же самое – услуга бывает платной и бесплатной, шахматная партия начинается белыми или черными.
Применяя закон исключенного третьего, надо помнить, что он ничего не говорит о том, какое из двух противоречащих суждений является истинным. Закон указывает лишь на то, что истинно одно и только одно из них, а другое обязательно ложно. Это значит, когда нам удалось установить значение истинности одного из двух противоречащих суждений, то тем самым определилось и значение истинности другого тоже. Отдельно устанавливать его уже не надо, потому что оно однозначно задается значением истинности сопряженного с ним понятия. Но какое из них именно должно быть оценено так, а какое иначе – для этого требуется отдельное исследование. Причем одной только логики для него уже, как правило, недостаточно и зачастую приходится вообще выйти за ее пределы и обратиться к специальным наукам. Закон исключенного третьего совершенно неприменим к событиям и явлениям лишь возможным, в частности к будущему.
Закон исключенного третьего: противоречащие мысли не могут быть одновременно ни истинными, ни ложными, т. е. если одна из противоречащих мыслей истинна, то другая будет обязательно ложна, и наоборот. Третьего в этом отношении нет: либо истина, либо ложь. Формульная запись его А v не-А, или АvА. Читается формула: истинно А или не-А (черта над символом – знак отрицания).
Закон достаточного основания.
Четвертый основной закон формальной логики выражает то фундаментальное свойство логической мысли, которое называют обоснованностью или доказанностью. Формулируется он обычно так: всякая мысль истинна или ложна не сама по себе, а в силу достаточного основания. Это значит: любое положение, прежде чем стать научной истиной, должно быть подтверждено аргументами, достаточными для признания его твердо и неопровержимо доказанным. Тем самым дается объяснение: по каким причинам имеет место данное положение, а не другое.