In the formed material, the coefficient of linear thermal expansion is 5,9*10—6 1/ K when the temperature value reaches 293 K. The Young’s modulus of such a material reaches 52 Gpa with a Poisson’s ratio of 0.41. Another, for some cases, favorable moments is the circumstance of its transparency for infrared radiation from 830 nm, but negative if it is necessary to detect such classes of radiation. It should be noted that this radiation depends on an energy close to the band gap of the material of 1.5 eV at 300 K, which causes its transparency for this kind of radiation corresponding to 20 microns.


Fig. 2. Shift of fluorescence spectra in cadmium telluride


This element also has the property of fluorescence, but reaches its peak only at 790 nm. This law is effective only for massive crystals, but when their size decreases comparatively and can reach the state of reduction to quantum dots, the peak of fluorescence begins to shift by a certain value, being already in the ultraviolet range. Most of all, this dependence is personified by the fluorescence spectrum of cadmium telluride for various sizes, where the size of colloidal particles increases from about 2 to 20 nm, and some quantum well appears in the face of the reason for this peak shift (Fig. 2).

Among the chemical properties of this compound, it is not worth saying quite a lot and it is quite enough to note that it is bad it dissolves in water, has the property of interacting even with weak acids with the release of hydrogen telluride and the formation of the corresponding salt, which is quite obvious.

Based on all the presented physico-chemical descriptions of this compound, as well as finding compliance with the physico-mathematical laws of photovoltaic phenomena, it is possible in a comparative analysis to talk about the very favorable suitability of this material for the role of a semiconductor photovoltaic base for such devices with relatively high efficiency. But it is worth saying that further improvement of this technology is inevitable and requires more detailed further consideration.

Used literature

1. Bovin L. A and others . Physics of compounds a-2 b-6 / edited by A. N. Georgobiani, M. K. Sheinkman. – M.: Nauka, Gl. ed. Phys.-mat. Lit., 1986. – 319 p.

2. Anselm, A. I. Introduction to the theory of semiconductors / A. I. Anselm. – L.: Nauka, 1978. – 616 p.

3. Anselm, A. I. Introduction to the theory of semiconductors / A. I. Anselm. – M.: Lan, 2008. – 624 p.

4. Anselm, A. I. Introduction to the theory of semiconductors / A. I. Anselm. – Moscow: Ogni, 1978. – 770 p.

5. Atia, M. Geometry and physics of knots / M. Atia. – Moscow: SPb. [et al.]: Peter, 1995. – 963 p.

6. Borisov, E. The key to the sun. Stories about semiconductors / E. Borisov, I. Pyatnova. – L.: Molodaya Gvardiya, 1997. – 304 p.

7. Dunlap, U. Introduction to semiconductor physics / U. Dunlap. – M.: Publishing House of Foreign Literature, 2011. – 430 p.

8. Zeldovich, Ya. B. Higher mathematics for beginners and its applications to physics / Ya. B. Zeldovich. – Moscow: RSUH, 1983. – 794 p.

9. Zeldovich, Ya. B. Higher mathematics for beginning physicists and technicians / Ya. B. Zeldovich, I. M. Yaglom. – Moscow: IL, 1982. – 108 p.

10. Ioffe, A. F. Selected works (volume 2). Radiation, electrons, semiconductors: monogr. / A. F. Ioffe. – Moscow: Nauka, 1976. – 552 p.

11. Kurchatov, I. V. I. V. Kurchatov. Collection of scientific papers in 6 volumes. Volume 1. Early works. Dielectrics. Semiconductors / I. V. Kurchatov. – L.: Nauka, 2005. – 576 p.