The best effect of this law occurs when the numbers entered in it have a spread of several orders of magnitude, as in this case, but Benford's law, unfortunately, cannot tell whether all the numbers end up in the 4-2-1 cycle. To do this, you need to use a different method. Initially, it is strange that this algorithm reduces all numbers to 1, given that even and non-even numbers equally and non-even numbers increase by more than 3 times, and even numbers decrease by 2 times.

This suggests the conclusion that all sequences should, in theory, go up, not down. But it is worth paying attention to the fact that whenever an operation is performed with a non-even number, that is, when it is multiplied by 3 and 1 is added, it necessarily turns into an even number, therefore, the next step it will always be divided by 2. It turns out that non-even numbers are not tripled, but multiplied by (3x+1) /2 or more precisely by 1.5, because 0.5 for large numbers can be ignored. So the maximum growth from this is exactly 1.5.

A graph has already been given for all numbers from 1 to 100, but it is worth considering a small case for all non-even numbers. As you know, in the second step they turn into even values, and then exactly half of them are immediately reduced, after dividing again to non-even. But every 4 numbers will have to be divided by 2 twice, which means that these non-even numbers are ¾ of the previous one. Every 8th number will have to be divided by 2 three times to get an even number. Every 16 four times, etc.

So taking the geometric mean, you can see that in order to get from one non-even number to another through all even numbers, you need to multiply it by ¾, which is less than one, hence it turns out that statistically, this sequence decreases more often than it grows.

Let's give an example for a large number, for example 341. Its row looks like this:

341 – 1024 – 512 – 256 – 128 – 64 – 32 – 16 – 8 – 4 – 2 – 1.

He had only one non-even and all even numbers, which is why this series is remarkable. However, they can be depicted both in the form of graphs and in the form of trees, showing how one of the numbers is connected with the next in its sequence, creating a graph.

And if the hypothesis is correct, then any number should be in this huge graph, consisting of an infinite number of "streams" forming 4-2-1 cycles in one stream. There is an interesting visualization of such a graph, which uses an algorithm that on non—even numbers, it rotates clockwise at the selected angle, and counterclockwise on even numbers.

As a result, an interesting curved structure is obtained, more often in one direction. Resembling coral, algae or a tree in the wind. But this is only for a small number of numbers, for huge arrays, changing the angles of rotation, you can create huge and dazzlingly beautiful figures, as if generated by nature.

The hypothesis seems to be incorrect only in 2 cases:

1. If a number is found that will give infinity in the algorithm, that is, for some unknown reason, this "force of attraction" to 4-2-1 should not act on it;

2. Somewhere there is a sequence that would form its own closed loop, and all the numbers in it should be outside the main graph.

However, none of these options has been found yet, although all numbers up to 2 to the 68th power have already been checked by a simple search, which equals 295,147,905,179,352,825,856 numbers. It is known for sure that all the numbers from these values come to the 4-2-1 cycle. Moreover, based on these data, it is calculated that even if there is such a special data cycle, it should consist of at least 186 billion numbers. And it turns out that all the works indicate that the hypothesis is true, but still does not prove it.