, то для него станет понятной связь между моделью λ-исчислений и биологическими нейронами.


Существует глубокое заблуждение, что «нейрон прост» и представляет собой элемент с известными функциональными свойствами, которые можно формально специфицировать. При этом упускаются из вида хорошо известные факты:

– как и всякая клетка, нейрон может размножаться;

– нейрон способен инициировать соединения с другими нейронами;

– нейрон может принимать или отказываться (attraction, repulsion) от приглашений на соединение, поступающие от других клеток;

– внутри нейрона есть механизм, который реагирует на изменение электро-магнитного и биохимического состояния внешней для него среды и, соответственно, у него есть генератор ответных электрических или химических сигналов;

– нейрон имеет внутреннюю долговременную память – при помощи рибосомы он способен копировать и интерпретировать молекулы РНК, в которых могут храниться разнообразные данные.


Эти свойства нейрона, а также ещё многое, чего мы пока не знаем, позволяют утверждать, что нейрон – не прост! Это не элемент, а сложная система, и ближайшим аналогом ему является вовсе не процессор или запоминающий элемент памяти, а целостный компьютер. Если исходить из этой аналогии, то нервная система похожа на сеть компьютеров, или – интернет нейронов.


Способность нейрона связываться с другими нейронами и с другими функциональными клетками, изменять свое состояние в соответствии с внутренними процессами и внешними сигналами, запоминать значения и генерировать выходные импульсы – является важным свойством, которое предполагает новый подход к анализу нервной деятельности, но одновременно открывает программистам пути для использования опыта биологических систем при решения принципиально нового класса задач.


Когда-то Аристотель в своих рассуждениях о природе знаний, выделил два типа поведения: подчиненное и рассудительное. Подчиненное поведение – это исполнение инструкций без необходимости или возможности понимать цель. А рассудительное – способность определить пользу действия и разработать инструкцию для исполнителя. Человек, способный понять – способен сформулировать цель и определить способ достижения. Так же и программист создает последовательности инструкций для исполнения компьютером аналогично тому, как менеджер или технолог создают процедуры для исполнителей в офисе или на производстве. В биологических системах, для того чтобы понять, используются динамические многослойные нейронные сети, способные генерировать новые ассоциации. Создание новых ассоциативных связей – это то, что отличает высшую нервную деятельность от любых, сколь угодно сложных, исполнительных механизмов или систем интерпретации программ. Нервная система червяка-нематоды принципиально отличаются от человека не только количеством нейронов, но и тем, что наш мозг постоянно создаёт новые связи, а у червяка, после этапа формирования, они остаются одними и теми же на протяжении всего периода его существования. И наверное поэтому люди все разные, а червяки – одинаковые.


Какой бы сложной не была программа, до тех пор, пока исполнительный механизм будет следовать ее логике, этот механизм не создает новых знаний. И в этом отличие машин Тьюринга или фон Неймана от динамических нейронных моделей. Машины такого типа не могут работать без загруженных в них программ, а наш головной мозг работает без центрального процессора и без внешнего программиста. Теперь на вопрос: «Может ли машина мыслить?» рассудительный программист мог бы ответить так: «Одна машина мыслить не может точно, а вот множество взаимосвязанных машин с определенными новыми свойствами, похоже, что да. И кто знает, возможно, что Интернет – это прототип нового поколения умных машин?».