Идеи Галилея сразу же подхватили многочисленные последователи. Со всей Италии в его дом устремляются коллеги-ученые, чтобы обсудить многочисленные научные задачи, открывшиеся в свете его новой книги. Скромное жилище Галилея превращается в настоящий научный институт со множеством лабораторий и усердно работающих в них ученых. Вплоть до самой своей смерти Галилей встречался с учениками, ведя с ними бесконечные беседы в попытках передать им свое понимание физических процессов и законов, которым они подчиняются.
Даже после смерти Галилея его учение продолжило шагать по Европе и добралось до берегов туманного Альбиона, где жил и работал Исаак Ньютон (1642–1727), английский физик и математик, одна из ключевых фигур в истории всей современной науки. Ему удалось развить идеи Галилея и оформить их в стройную научную теорию, которая носит теперь название классической механики. В 1687 году Ньютон издает свою знаменитую работу «Математические начала натуральной философии», в которой излагает основные законы классической механики, носящие теперь его имя. Оказалось, что для классического описания всех механических явлений достаточно всего лишь трех законов. Далее мы все их перечислим.
Вопрос 5. В чем смысл трех законов Ньютона?
Физика – это точная наука. Поэтому, помимо качественного описания воздействия сил на физические тела, нужны количественные оценки этого воздействия. А для этого нужен математический аппарат (т. е. формулы) для точного описания меры этого воздействия и связи сил с другими физическими величинами. Именно это и делают три закона Ньютона. Давайте разберемся, что это за законы и в чем их суть.
Первый закон Ньютона по сути представляет собой тот самый закон инерции, открытый Галилеем, о котором мы говорили в предыдущей главе (стр. 24). Одна из возможных формулировок первого закона гласит: если на тело не действуют никакие силы (либо равнодействующая всех сил равна нулю), то тело будет находиться в состоянии покоя либо двигаться равномерно и прямолинейно.
Это утверждение не только о том, что состояние покоя и равномерного прямолинейного движения являются естественными, но и о том, что эти два состояния физически эквивалентны. Более подробно эту идею мы обсудим в следующей главе, отвечая на вопрос «Что такое относительность?» (стр. 32).
Второй закон Ньютона формулируется уже на математическом языке, так что с его помощью можно рассчитать все характеристики движения. Его можно сформулировать в следующем виде: если на тело действует какая-то сила, то ускорение, которое оно приобретет, будет прямо пропорционально этой силе и обратно пропорционально массе этого тела. Однако всем школьникам этот закон гораздо более знаком в виде формулы:
где F – это сила, m – масса, а – ускорение, которое показывает, как быстро изменяется скорость тела. Стрелочки над буквами означают векторные величины, потому что сила и ускорение, помимо численного значения, также имеют направление.
Для решения таких уравнений Ньютону пришлось разработать совершенно новый математический аппарат – интегральное и дифференциальное исчисление (другое название – математический анализ). На этом новом математическом языке второй закон Ньютона представляет собой дифференциальное уравнение, поскольку ускорение – это производная от скорости, а скорость – это производная от координаты. Следовательно, зная силу, действующую на тело, и решая это дифференциальное уравнение, мы можем узнать координату и скорость тела в любой момент времени. Т. е. чтобы описать движение любого тела, достаточно знать всего лишь силу, которая на него действует.