– Особенности: Полносвязные слои обычно располагаются в конце сети после свёрточных и пулинговых слоёв.

4. Функции активации:

– Цель: Введение нелинейности в модель. Применяются после каждого свёрточного и полносвязного слоя для того, чтобы модель могла учиться сложным зависимостям в данных.

– Особенности: Распространённые функции активации включают ReLU (Rectified Linear Unit), которая преобразует отрицательные значения в ноль, и softmax для последнего слоя, который представляет вероятности принадлежности к различным классам.

5. Компиляция и обучение модели:

– Цель: Определение параметров обучения, таких как оптимизаторы, функции потерь и метрики для оценки производительности модели.

– Особенности: Оптимизаторы, такие как Adam или SGD, используются для минимизации функции потерь, а метрики, такие как точность, используются для измерения эффективности модели на тестовых данных.

Свёрточные нейронные сети являются основой для решения задач компьютерного зрения, обеспечивая эффективное извлечение и классификацию признаков из изображений. Эффективность этих сетей подтверждается их успешным применением в широком спектре приложений, от распознавания объектов до автоматического описание изображений.

4. Построение более сложной CNN с использованием нескольких слоев

– Задача: Углубленная классификация изображений.

Для углубленной классификации изображений с использованием более сложной сверточной нейронной сети (CNN) важно использовать несколько слоев, включая сверточные слои, слои подвыборки (pooling), а также полносвязные слои. Рассмотрим пример такой сети на языке Python с использованием библиотеки TensorFlow и Keras.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение модели CNN.

4. Компиляция и обучение модели.

5. Оценка и тестирование модели.

Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

# Шаг 2: Подготовка данных

# Загрузка и нормализация данных CIFAR-10

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

train_images, test_images = train_images / 255.0, test_images / 255.0

# Шаг 3: Построение модели

model = models.Sequential()

# Первый сверточный слой

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

# Добавление полносвязных слоев

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10))

# Шаг 4: Компиляция и обучение модели

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10,

validation_data=(test_images, test_labels))

# Шаг 5: Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print(f'\nТочность на тестовых данных: {test_acc}')

# Визуализация процесса обучения

plt.plot(history.history['accuracy'], label='Точность на обучающем наборе')

plt.plot(history.history['val_accuracy'], label='Точность на валидационном наборе')

plt.xlabel('Эпоха')

plt.ylabel('Точность')

plt.legend(loc='lower right')

plt.show()

```

Пояснение:

1. Импорт библиотек: Загружаются необходимые библиотеки TensorFlow и Keras для построения и обучения модели.

2. Подготовка данных: Загрузка набора данных CIFAR-10, который содержит 60,000 цветных изображений размером 32x32, разделенных на 10 классов. Данные нормализуются, чтобы ускорить обучение.