Одна из причин появления воды на поверхности льда – давление. Оказывается, при повышении давления температура плавления льда снижается, а значит, при достаточном давлении со стороны коньков лёд начнёт плавиться даже на сильном морозе.
Но вот незадача: проведённые расчёты показывают, что давления от коньков не хватает для таяния льда! На выручку приходят некоторые особенности поверхности льда. Лёд не идеально гладкий – он покрыт большими и микроскопическими неровностями, поэтому фактическая площадь опоры конька в сотни раз меньше, чем геометрическая площадь пятна контакта. Значит, и давление в месте контакта каждой микронеровности льда с микронеровностью конька в сотни, тысячи и даже десятки тысяч раз выше расчётного. Этого более чем достаточно для плавления и образования водяной плёнки!
Теперь понятно, что на стекле или любой другой гладкой поверхности без смазки трение остаётся сухим, а на льду трение всегда «мокрое», и именно поэтому он скользкий.
Куда летит камень?
Возьмите кучу камней и ради удовольствия покидайте их. Желательно не в окно, а просто в чистом поле. Вскоре вы увидите, что камни летят примерно по одинаковому пути, а если вы произведёте вычисления, то установите: каждый камень, независимо от угла и силы первоначального броска, летит по одной траектории – параболе. И по параболической траектории движутся любые тела, брошенные в поле тяжести.
Но почему камень летит именно по параболе? Всё дело в так называемом принципе наименьшего действия (он также известен, как принцип Гамильтона или принцип стационарного действия).
Прежде, чем разобраться в существе этого принципа, нужно выяснить, что такое действие. В физике под действием понимают физическую величину, которая выступает мерой движения тела или физической системы. Если рассматривать окружающий нас макроскопический мир, за действие можно принять разность кинетической и потенциальной энергии тела за всё время его движения.
Поэтому под принципом наименьшего действия мы понимаем следующее: любое тело движется по такому пути, на котором разность кинетической и потенциальной энергии будет минимальной. И так уж вышло, что эта разность минимальна только при движении тела по параболической траектории.
Однако самое интересное здесь не сам принцип наименьшего действия, а тот факт, что тела «знают» о нем. В сущности, ничто не ограничивает свободу полёта брошенного камня, он может лететь сколь угодно сложными зигзагами, непредсказуемо меняя свою скорость и направление движения. Однако в реальности мы наблюдаем, что камень всегда «выбирает» параболическую траекторию с наименьшим действием. Этот вопрос имеет философский характер и на него нет однозначного ответа.
Принцип наименьшего действия универсален как для макромира, так и для микромира, в котором правит квантовая механика. Причём в квантовой механике (а точнее, в её копенгагенской интерпретации) считается, что любая движущаяся микрочастица «знает» о существовании всех возможных траекторий своего движения, и движется сразу по ним всем (а их может быть бесконечное количество!). Но при наблюдении с наибольшей вероятностью мы обнаружим эту частицу именно на той траектории, на которой соблюдается принцип наименьшего действия.
Как видите, простой полёт камня и микрочастицы – это на не так уж и просто. Несмотря на то, что нам известен принцип наименьшего действия, и мы можем производить сложные расчёты траекторий движения физических тел, мы не можем дать однозначного ответа, как эти тела «выбирают» именно эти траектории.
Существует ли центробежная сила?