Вот почему в двенадцатеричном цикле простые числа никогда не появляются в позициях 2 или 3 или в любом произведении, которое включает одно из них или оба этих числа, например: 4 (2 × 2), 6 (2 × 3), 8 (2 × 2 × 2), 9 (3 × 3), 10 (2 × 5) или 10 (2 × 2 × 3). Это делает позиции 1, 5, 7 и 11 единственно возможными для появления простых чисел. Это означает не только то, что числа 2 и 3 должны быть исключены из последовательности простых чисел, но и то, что в нее должно быть включено число 1, поскольку позиция числа 1 в двенадцатеричном цикле – это всегда одна из основных четырех позиций простых чисел, в отличие от общепринятого их определения, которое исключает 1, но включает 2 и 3.

Фактически, если рассматривать числа не просто как отметки на прямой числовой оси, а как частоты в двенадцатеричном вибрационном цикле, традиционное определение простых чисел внезапно выглядит устаревшим и даже некорректным. Вместо определения простого числа как «любого целого числа больше 1, которое делится только на 1 и на само себя» это определение для десятичной системы должно звучать так: «1, 5, 7 или 11, или любое число, кратное 12, которое в сумме с этими числами делится только на 1 и на само себя», т. е. первая последовательность простых чисел по основанию 10: 1, 5, 7, 11; 1 × 12 + 1 = 13; 1 × 12 + 5 = 17; 1 × 12 + 7 = 19… и так далее. Обратите внимание, что первым числом, которое в соответствии с новым определением не считается простым, будет 2 × 12 + 1 = 25, поскольку 25 делится на 5.

Я знаю, что для любого математика прочесть такое – настоящее богохульство! Тем не менее это чрезвычайно важный аргумент, поскольку он служит ключом к пониманию истинной природы простых чисел как вибрационных строительных блоков всех чисел, а не только числовых строительных блоков. Также это ключ к пониманию того, как работает нумерология. Вот почему мы должны уяснить это в самом начале книги.

Кстати, цикличная природа чисел свойственна не только двенадцатеричной системе. Она присутствует и в десятичной системе счисления. Только ее цикл строится не на 2 и 3, как в двенадцатеричном цикле, а на 2 и 5 (поскольку 2 × 5 = 10). Таким образом, в десятичном цикле простые числа никогда не появляются в позиции 2 или 5, а также в любом произведении, которое включает одно или оба этих числа, например: 4 (2 × 2), 6 (2 × 3), 8 (2 × 2 × 2) или 10 (2 × 5). Это делает позиции 1, 3, 7 и 9 единственно возможными для простых чисел. Еще раз, мы рассматриваем число 1 как необходимый циклический множитель простых чисел.

Однако важное различие между десятичной и двенадцатеричной системами, если рассматривать их как циклы, состоит в том, что позиции четырех простых чисел в двенадцатеричной системе обладают вращательной симметрией, в отличие от десятичной, как показано ниже.

В двенадцатеричной системе позиции четырех простых чисел образуют прямоугольник, который, если представить его в виде синусоидальных волн, сводится к двум сбалансированным волнам двенадцатеричного нумерологического цикла. Это связано с тем, что в двенадцатеричном цикле позиции 1 и 7 расположены друг напротив друга, как и позиции 5 и 11, так что при попарном вычитании они объединяются в одну волну с амплитудой 6 (7–1 = 6, 11 – 5 = 6).

В десятичном цикле такой симметрии или комбинации противоположных частот нет. В графическом изображении положения четырех простых чисел остаются несовместимыми синусоидальными волнами с разной амплитудой 1, 3, 7 и 9. Итоговая комбинированная волна представляет собой беспорядочные колебания без очевидной закономерности или простоты, что объясняет, почему в десятичной системе так сложно найти какую-либо закономерность для простых чисел.