То есть отношение а к среднему арифметическому а и b равно отношению среднего гармонического к b.
В частном виде, при экспериментировании с монохордом можно было получить такое выражение: 12/9 = 8/6. При этом 9 – среднее арифметическое 12 и 6, а 8 – среднее гармоническое. Дальше, скорее всего, были обнаружены и такие равенства: 2/1 = 3/2:3/4. Численно был выражен целый тон, как разница между квинтой и квартой: 3/2:4/3 = 9/8. Естественно, что еще Пифагор и его ученики придали обнаруженным закономерностям, кроме научного, и мистический смысл. Числа, с помощью которых можно было выразить музыкальные интервалы, составили тетрактиду. Вот пример того, как вместе с математической теорией музыки могла развиваться и теория пропорций.
Теперь подробнее рассмотрим теорему, названную в честь нашего героя. Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов двух катетов. И вавилоняне, и египтяне были знакомы с этим утверждением задолго до Пифагора и использовали его знание в практических целях. Конечно же, задаваясь вопросом о том, кто открыл теорему Пифагора, мы, прежде всего, интересуемся тем, кто ее доказал. Споры об этом не прекращаются до сих пор, и вряд ли исследователи когда-нибудь придут к единому мнению по данному вопросу. Сложность решения этой проблемы связана не только с якобы бытовавшей среди пифагорейцев традицией приписывать свои открытия Пифагору. В свидетельствах биографов встречаются противоречия, которые ставят под сомнение авторство Пифагора. Так, Диоген Лаэртий пишет:
Долгое время эта цитата считалась серьезным косвенным доказательством того, что на самом деле не Пифагор доказал теорему, названную его именем. Ведь такое свидетельство противоречит представлению о Пифагоре как о вегетарианце и факту, что он учил не приносить в жертву животных. Но, как мы уже писали выше, современные исследователи считают, что запрет на принесение в жертву животных, на самом деле, был приписан ученому позже. Поэтому в качестве серьезного возражения против авторства Пифагора такой довод рассматриваться не может. С другой стороны, есть косвенное подтверждение того, что именно Пифагор первым доказал знаменитую теорему. Дело в том, что ее первое доказательство вполне могло вытекать из той же самой теории пропорций. Предположительно оно могло выглядеть следующим образом.
Треугольники ABC, ABD и ACD подобны. Следовательно, их стороны пропорциональны:
Следовательно:
Сложив эти уравнения, получаем:
Пифагор создал учение о четных и нечетных числах. Он дал определения этим видам чисел и исследовал их свойства. Историки математики считают, что приведенные ниже утверждения из 9-й книги «Начал» Евклида восходят к Пифагору и переданы практически в неизмененном виде.
21. Если складывается сколько угодно четных чисел, то целое будет четным.
22. Если складывается сколько угодно нечетных чисел, количество же их будет четным, то целое будет четным.
23. Если складывается сколько угодно нечетных чисел, количество же их будет нечетным, то и целое будет нечетным.
24. Если от четного числа отнимается четное, то остаток будет четным.
25. Если от четного числа отнимается нечетное, то остаток будет нечетным.
26. Если от нечетного числа отнимается нечетное, то остаток будет четным.
27. Если от нечетного числа отнимается четное, то остаток будет нечетным.
28. Если нечетное число, умножая четное, производит что-то, то возникающее будет четным.